

ปฏิกิริยารีดอกซ์ที่เกิดขึ้นในการไทเทรต คือ

$$A^{2+} + 2M^{3+} \rightleftharpoons A^{4+} + 2M^{2+}$$

- a) จงคำนวณหาค่าคงที่ของปฏิกิริยานี้ (equilibrium constant) เมื่อมีสภาวะของการ ไทเทรตเป็นดังนี้คือ 50 ลบ.ซม.ของ 0.10 M A²⁺ ถูกไทเทรตด้วย 0.20 M M³⁺ เมื่อ เติม 49.95 ลบ.ซม. ของไทแทรนต์ปฏิกิริยาสามารถเกิดขึ้นได้อย่างสมบูรณ์ เมื่อ เติมไทแทรนต์เพิ่มอีก 2-3 หยด (0.10 ลบ.ซม.) ค่า pA จะเปลี่ยนไป 2 หน่วย
 b) จงคำนวณหาความแตกต่างของค่าศักย์ไฟฟ้ามาตรฐานของครึ่งปฏิกิริยาที่ทำให้เกิด
-) จงทำนวนนท เทวรมแทกต่างของทาเทกอาเพพ เมาตรฐานของทรงบฏกรอาก ปฏิกิริยาข้างบนนี้จากค่าคงที่ของสมดุล (K,) ที่หาได้จากข้อ a

คำตอบ

a) $K_{e4} = \frac{[A^{4+}][M^{2+}]^2}{[A^{2+}][M^{3+}]^2}$

เมื่อเติมไทแทรนต์ไป 49.95 ลบ.ซม. แสดงว่ามี [A²⁺] _{เหลือ} = <u>50 x 0.10 (0.20 x 49.95) x 1/2</u> 99.95 ≅ 5 x 10⁻⁵ pA = 4.30

เมื่อเติมไทแทรนต์ไปอีก 0.1 ลบ.ซม. จะทำให้ pA เปลี่ยนไป 2 หน่วย นั่นคือ pA เมื่อไทเทรตเกินจุดสมมูล = 4.30+2.0

$$= 6.30$$
... $[A^{2*}] = 5x \ 10^{-7}$

CH 233 **(H)**

ปริมาณไทแทรนต์ที่เดิมเกินคือ ปริมาณของ M³⁺ ซึ่งเดิมเพิ่มขึ้นอีก 0.10 ลบ.ซม. แสดงว่าเดิมทั้งหมด = 49.95 + 0.1 = 50.05 ลบ.ซม. แสดงว่าเดิมเกินจุดสมมูล (ด้อง ใช้ = 50.00) เท่ากับ 0.05 ลบ.ซม.

:. $[M^{3+}]_{a}$ จุดที่ทำการไทเทรดเกิน $= \frac{0.2 \times 0.05}{100.05} = 1 \times 10^{-4}$

จากปฏิกิริยาการไทเทรต

 $A^{2+} + 2M^{3+} \rightleftharpoons A^{4+} + 2M^{2+}$

พิจารณาได้ว่า เมื่อการไทเทรตมีการเติม [M³⁺] เกินจุดสมมูล แสดงว่า ณ จุดที่ ทำการไทเทรตนี้จะมี [M²⁺] และ [A⁴⁺] เกิดขึ้นเท่ากับปริมาณ [A²⁺] ที่มีอยู่ในตอน เริ่มต้น

$$[A^{4*}] = \frac{50 \times 0.1}{100.05}$$
$$= 5 \times 10^{-2} M$$
$$[M^{2*}] = \frac{50 \times 0.1 \times 2}{100.05}$$
$$= 0.10 M$$

แทนก่าต่าง ๆ ลงในสมการก่า K_{eq}

$$K_{eq} = \frac{(5 \times 10^{-2})(0.1)^2}{(5 \times 10^{-7})(1 \times 10^{-4})^2}$$

= 1 x 1 0 "

b) จากสมการ

$$\log K_{eq} = \frac{nE_{cell}^{0}}{0.059}$$

$$\log 1 \times 10^{11} = \frac{2E_{cell}^{0}}{0.059}$$

$$E_{cell}^{0} = \frac{11 \times 0.059}{2}$$

$$= 0.33 \quad V$$

E_{cell} คือ ความแตกต่างของค่าสักย์ไฟฟ้ามาตรฐานของกรึ่งปฏิกิริยา

2) ฝึกหัดทำด้วยตนเอง

428

CH 233 (H)

3) a) จงคำนวณหาค่าคงที่ของสมดุลของปฏิกิริยาในการไทเทรด

$$Fe^{2+} + B^{3+} \Rightarrow Fe^{3+} + B^{2+}$$

เมื่อถ่าศักย์ไฟฟ้ามาตรฐานของ B³⁺ – B²⁺ มีถ่าเท่ากับ +1.07 โวลต์ ท่านกิดว่าการ ไทเทรตนี้เป็นไปได้หรือไม่ (คือสามารถทำการไทเทรตสารสองตัวนี้ได้หรือไม่) b) จงกำนวณหามิลลิกรัมของ Fe²⁺ ที่เหลืออยู่ที่จุดยุติ เมื่อ 5.0 มิลลิโมลของ Fe²⁺ ถูก ไทเทรตด้วย 0.10 M B³⁺ โดยเติมให้มากเกินพอเพียง 1 หยด (0.05 ลบ.ซม.) และ สารละลายสุดท้ายมีปริมาตร 100 ลบ.ซม.

คำตอบ

a)
$$\log K_{eq} = \frac{n(E_B^o - E_{Fe}^o)}{0.059}$$

= $\frac{1(1.07 - 0.771)}{0.059}$
 $\log K_{eq} = 5.07$
 $K_{eq} \cong 1 \times 10^5$

เมื่อค่า K_{eq} มีค่ามากกว่า 1 แสดงว่าปฏิกิริยาสามารถดำเนินไปทางขวามือได้ นั่นคือการไทเทรคนี้เป็นไปได้

b)
$$[B^{3^{+}}] = \frac{0.10 \times 0.05}{100} = 5 \times 10^{-5}$$

 $[Fe^{3^{+}}] \cong \frac{5}{100} = 5 \times 10^{-2}$
 $[B^{2^{+}}] \cong \frac{5}{100} = 5 \times 10^{-2}$
 $K_{eq} = 1 \times 10^{5} = \frac{[Fe^{3^{+}}][B^{2^{+}}]}{[Fe^{2^{+}}][B^{3^{+}}]}$
 $= \frac{(5 \times 10^{-2})(5 \times 10^{-2})}{[Fe^{2^{+}}](5 \times 10^{-5})}$
 $\therefore [Fe^{2^{+}}] = \frac{(5 \times 10^{-2})(5 \times 10^{-2})}{(1 \times 10^{5})(5 \times 10^{-5})}$
 $= 5 \times 10^{-4} M$
§12222336367333 Fe²⁺ = $5 \times 10^{-4} \times 100 \times 56$
 $= 2.8$ $\hat{J}a\hat{a}a\hat{n}33$

CH 233 (H)

4) 8.00 มิลลิโมลของ Fe²⁺ น้ำมาละลายเป็นสารละลาย 100 ลบ.ซม. แล้วถูกไทเทรดด้วย 0.10 M B⁴⁺ เมื่อ B⁴⁺ + 2e ≠ B²⁺ E^o = + 1.28V จงกำนวณหาศักย์ไฟฟ้าเมื่อเติม ไทแทรนด์ไป

- a) 10.0 ลบ.ชม.
- b) ที่จุดสมมูล
- c) 60.0 ลบ.ซม.
- d) จงกำนวณหาอัตราส่วนของ Fe³⁺/Fe²⁺ ที่จุดสมมูล
- e) จงคำนวณหา % Fe²⁺ ที่ไม่ถูกออกซิไดล์ที่จุดสม[ู]มูล

คำตอบ

a) เมื่อเติมไทแทรนต์ไป 10.0 ลบ.ซม.

.

$$[Fe^{2*}] = \frac{8 - 2(0.1 \times 10)}{110}$$

= 5.45 × 10⁻² M
$$[Fe^{3*}] = \frac{2(0.1 \times 10)}{110}$$

= 1.81 × 10⁻² M
$$E = E_{Fe}^{0} - 0.059 \log \frac{[Fe^{2*}]}{[Fe^{3*}]}$$

= 0.771 - 0.059 log $\frac{(5.45 \times 10^{-2})}{(1.81 \times 10^{-2})}$
= 0.771 - 0.059 × 0.479
= 0.743

b) ที่จุดสมมูล

จากแบบฝึกหัดข้อ 28 บทที่ 13 พิจารณา E ที่จุดสมมูลได้ดังนี้

$$E = \frac{aE_1^o + bE_2^o}{a + b}$$
$$= \frac{E_{F_c}^o + 2E_B^o}{1 + 2}$$
$$= \frac{0.771 + 2(1.28)}{3}$$
$$\therefore E_{\eta_{\eta,\eta,\eta,\eta,\eta}} = 1.11 \quad V$$

CH 233 (H)

c) เมื่อเติมไทแทรนต์ 60.0 ลบ.ซม.

$$\begin{bmatrix} B^{4*} \end{bmatrix}_{\mathbf{n} \in \mathbf{N} \times \mathbf{n}^{2}}^{\mathbf{1}} = \frac{\left(60 \times 0.10 - \frac{8}{2}\right)}{160}$$

= 1.25×10^{-2} M
$$\begin{bmatrix} B^{2*} \end{bmatrix}_{\mathbf{n} \in \mathbf{n} \times \mathbf{n}^{2}}^{\mathbf{2}} = \frac{\frac{8}{2}}{160}$$

= 2.50×10^{-2} M
$$\mathbf{E} = \mathbf{E}_{\mathbf{B}}^{\mathbf{0}} - \frac{0.059}{2} \log \frac{\left[\mathbf{B}^{\mathbf{a}}\right]}{\left[\mathbf{B}^{\mathbf{4}*}\right]}$$

= $1 \cdot 2 \cdot 8 - \mathbf{F} - \log \frac{2.50 \times 10^{-2}}{1.25 \times 10^{-2}}$
= 1.27

 d) จงคำนวณหาอัตราส่วนของ Fe³⁺/Fe²⁺ ที่จุดสมมูล จากข้อ b ได้

$$E_{nijnaujja} = 1.11 \quad V$$

$$E = E_{Fe}^{o} - 0.059 \log \frac{[Fe^{2*}]}{[Fe^{3*}]}$$

$$1.11 = 0.771 + 0.059 \log \frac{[Fe^{3*}]}{[Fe^{2*}]}$$

$$\log \frac{[Fe^{3*}]}{[Fe^{2*}]} = \frac{0.339}{0.059}$$

$$= 5.746$$

$$\therefore \frac{Fe^{3*}}{Fe^{2*}} = 5.57 \times 10^{5}$$

e) จงกำนวณหา %Fe²+ ที่ไม่ถูกออกซิไดส์ที่จุดสมมูล ปริมาณ [Fe³+] ที่เกิดขึ้น ≃ 8 มิลลิโมล แทนก่าลงในอัตราส่วน

$$\frac{Fe^{3+}}{Fe^{2+}} = 5.57 \times 10^5$$

∴ $Fe^{2+} = \frac{8}{5.57 \times 10^3}$ มิถลิโมล

CH 233 (H)

$$\% \quad \text{Fe}^{2+} = \frac{8}{5.57 \times 10^5} \times \frac{100}{8} \\
 = 1.79 \times 10^{-4}$$

5) 3.00 มิลลิโมลของ Fe²⁺ ถูกไทเทรตด้วย 0.025 M Cr₂O₇²⁻ ปริมาตรสุดท้ายเป็น 100 ลบ.ซม. และความเข้มข้นของไฮโดรเจนไอออนเท่ากับ 1 M จงคำนวณหาจำนวนมิลลิกรัมของ Fe²⁺ ที่เหลืออยู่เมื่อไทเทรตเกินจุดสมมูลไป 0.1 ลบ.ซม.

คำตอบ

.

$Fe^{3+} + e \rightleftharpoons Fe^{2+} = 0.732 V lu 1 M H_3^*O$
$Cr_2O_7^{2^-} + 14H^+ + 6e \rightleftharpoons 2Cr^{3^+} + 7H_2O \qquad E^o = 1.33 V$
$6Fe^{2*} + Cr_2\dot{O}_7^2 + 14H^* \rightleftharpoons 2Cr^{3*} + 6Fe^{3*} + 7H_2O$
$\begin{bmatrix} Cr_2 O_7^{2-7} \\ m_1 & n_1 & n_2 \\ m_1 & n_2 \\ m_1 & n_2 \\ m_1 & n_1 \\ m_1 & n_2 \\ m_2 & n_2 \\ m_1 & n_2 \\ m_2 & n_2 \\ m_1 & n_2 \\ m_2 & n_2 \\ m_1 & n_2 \\ m_1 & n_2 \\ m_1 & n_2$
$[Cr^{3+}] = \frac{\frac{3.00}{6} \times 2}{100.1}$
$= 1.00 \times 10^{-2} \text{ M}$ $E = E_{Cr}^{0} - \frac{0.059}{6} \log \frac{[Cr^{3*}]^{2}}{[Cr_{2}O_{7}^{2-}][H^{*}]^{4}}$
$= 1.33 - \frac{0.059}{6} \log \frac{(1.00 \times 10^{-2})^2}{(2.5 \times 10^{-5})(1)^{14}}$
= 1.27 V

ที่จุดเมื่อทำการไทเทรตเกินจุดสมมูลไป 0.1 ลบ.ซม. แสดงว่า

$$\begin{bmatrix} Fe^{3*} \end{bmatrix}_{i\hat{n}\hat{n}\hat{n}\hat{u}_{1}} = \begin{bmatrix} Fe^{2*} \end{bmatrix}_{\hat{n}\hat{u}\hat{u}\hat{u}\hat{u}\hat{u}_{1}}$$
$$= \frac{3}{100.1}$$
$$= 3 \times 10^{-2}$$
$$E = E_{Fe}^{0} - 0.059 \log \frac{[Fe^{3*}]}{[Fe^{2*}]}$$

CH 233 (H)

$$1.27 = 0.700 - 0.059 \log \frac{3 \times 10^{-2}}{[Fe^{2+}]}$$

$$0.059 \log[Fe^{2+}] = 1.27 - 0.700 - 1.523$$

$$= -0.953$$

$$\log[Fe^{2+}] = -\frac{0.953}{0.059}$$

$$= -16.152$$

$$[Fe^{2+}] = 7.1 \times 10^{-17}$$
งำนวนมิลลิกรัม Fe²⁺ ที่เหลืออยู่ = 7.1 x 10⁻¹⁷ x 100.1 x56
= 3.98x 10⁻¹³ มิลลิกรัม

- 6) จงคำนวณหาศักย์ไฟฟ้าของการไทเทรตสารละลายเมื่อเติมไทแทรนต์ KMnO4 เข้มข้น 0.100 N ลงใน 25.00 ลบ.ซม. ของ 0.100 N SnSO4 ในกรดซัลฟิวริกดังต่อไปนี้ สมมุติ ว่าปริมาตรแต่ละครั้งเป็น 100.0 ลบ.ซม. และความเข้มข้นของไฮโดรเจนไอออนเท่า กับ 1.0 M
 - a) 5.00 るレ. ザม.
 b) 12.50 るレ. ザม.
 c) 20.00 るレ. ザม.
 d) 24.95 るレ. ザม.
 e) 25.00 るレ. ザม.

คำตอบ

 $2KMnO_4 + 8H_2SO_4 + 10e \Rightarrow 2MnSO_4 + K_2SO_4 + 8H_2O + 5SO_4^*$ $E^\circ = 1.51 V$

 $5 \text{Sn}(\text{SO}_4)_2 + 10e \Rightarrow 5 \text{SnSO}_4 + 5 \text{SO}_4^*$

 $2MnO_4 + 5SnSO_4 + 8H_2SO_4 \rightarrow 2MnSO_4 + K_2SO_4 + 5Sn(SO_4)_2 + 8H_2O$

· · · · · · · · · · · · · · · · · · ·	
ปริมาณไทแทรนด์	
0.100 N KMnO ₄	E
(cm ³)	
a) 5.00	$[Sn^{2+}] = \frac{25 \times 0.1 - 5 \times 0.1}{100} = 2.0 \times 10^{-2}$
	$[Sn^{44}] = \frac{5 \times 0.1}{100} = 5.0 \times 10^{-3}$
	$E = 0.154 - \frac{0.059}{2} \log \frac{2.0 \times 10^{-2}}{5.0 \times 10^{-2}}$
	= 0.136 V
b) 12.50	ที่จุดกึ่งกลางของการไทเทรตจุดสมมูล
	$[Sn^{2+}] = [Sn^{4+}]$
	$\therefore \mathbf{E} = 0.154 \ \mathbf{\hat{V}}$
c) 20.00	$[Sn^{2+}] = \frac{25 \times 0.1 - 20 \times 0.1}{100} = 5.0 \times 10^{-3}$
	$[Sn^{44}] = \frac{20 \times 0.1}{100} = 2.0 \times 10^{-2}$
	$E = 0.154 - \frac{0.059}{2} \log \frac{5.0 \times 10^{-3}}{2.0 \times 10^{-2}}$
	= 0.172 V

CH 233 (H)

d) 24.95	$[Sn^{2*}] = \frac{25 \times 0.1 - 24.95 \times 0.1}{100} = 5.0 \times 10^{-5}$
	$[Sn^{4+}] = \frac{24.95 \times 0.1}{100} = 2.495 \times 10^{-2}$
	$E = 0.154 - \frac{0.059}{2} \log \frac{5.0 \times 10^{-5}}{2.495 \times 10^{-2}}$
	E = 0.231 V
e) 25.00	$MnO_4^- + 8H^+ + 5e \rightleftharpoons Mn^{2+} + 4H_2O$ (1)
	$\operatorname{Sn}^{4+} + 2e \rightleftharpoons \operatorname{Sn}^{2+}$ (2)
	$E_{1} = E_{MnO_{4}}^{0} - \frac{0.059}{5} \log \frac{[Mn^{2+}]}{[MnO_{4}^{-}][H^{+}]^{8}} \qquad \dots \dots$
	$E_2 = E_{Sn^{4+}} - \frac{0.059}{2} \log \frac{[Sn^{2+}]}{[Sn^{4+}]} \qquad \dots \dots \dots (4)$
	(3)×5
	$5E_1 = 5E_{MnO_4^-}^\circ - 0.059 \log \frac{[Mn^{2+}]}{[MnO_4^-][H^+]^8}$ (5)
	(4)×2
	$2E_2 = 2E_{3n^{4+}}^{\circ} - 0.059 \log \frac{\mathrm{Sn}^{2+}}{[\mathrm{Sn}^{4+}]} \qquad \dots $
	$(5) + (6) [E_1 = E_2 \vec{n} eq.pt.]$
	$7E = 5E_{MnO_{4}}^{\circ} + 2E_{Sn^{4+}}^{\circ} - 0.059 \log \frac{[Mn^{2+}][Sn^{2+}]}{[Sn^{4+}][MnO_{4}^{-}][H^{+}]^{8}}$
	$5 [MnO_{4}^{-}] = 2 [Sn^{2+}]$
	$5 [Mn^{2+}] = 2 [Sn^{4+}]$
	$\therefore E = \frac{5E_{MnO_4}^{\circ} - 2E_{Sn^{4+}}^{\circ}}{7} - \frac{0.059}{7}\log\frac{1}{[H^+]^8}$
	$= \frac{5 \times 1.51 - 0.154 \times 2}{7} - 0$
	E = 1.034 V
f) 25.10	$[MnO_{4}^{-}] = \frac{0.1 \times 0.1}{100} = 1 \times 10^{-4}$

	$[Mn^{2^{+}}] = \frac{25 \times 0.1}{100}$	$= 2.5 \times 10^{-2}$
	$E = 1.51 - \frac{0}{2}$	$\frac{059}{5} \log \frac{[Mn^{2+}]}{[MnO_{4}][H^{+}]^{8}}$
	$E = 1.51 - \frac{0}{2}$	$\frac{059}{5} \log \frac{[2.5 \times 10^{-2}]}{[1 \times 10^{-4}]}$
	= 1.482 V	
g) 30.00	$[MnO_4^-] = \frac{5.0 \times 0.1}{100}$	$= 5.0 \times 10^{-3}$
	$[Mn^{2+}] = \frac{25 \times 0.1}{100}$	$= 2.5 \times 10^{-2}$
	$E = 1.51 - \frac{0}{2}$	$\frac{059}{2}\log\frac{2.5\times10^{-2}}{5.0\times10^{-3}}$
	= ⁻ 1.500 V	
h) 40.0	$[MnO_{4}^{-}] = \frac{15 \times 0.1}{100}$	$= 1.5 \times 10^{-2}$
	$[Mn^{2*}] = \frac{25 \times 0.1}{100}$	$= 2.5 \times 10^{-2}$
	$E = 1.51 - \frac{0.0}{2}$	$\frac{0.59}{5} \log \frac{2.5 \times 10^{-2}}{1.5 \times 10^{-2}}$
	E = 1.510 V	
i) 50.0	$[MnO_4^-] = \frac{25 \times 0.1}{100}$	$= 2.5 \times 10^{-3}$
	$[Mn^{2+}] = \frac{25 \times 0.1}{100}$	$= 2.5 \times 10^{-2}$
	$E = 1.51 - \frac{0}{2}$	$\frac{059}{5} \log \frac{2.5 \times 10^{-2}}{2.5 \times 10^{-2}}$
	E = 1.510 V	,

- 7) และ 8) ฝึกหัดทำด้วยตนเอง
- 9) ดังโจทย์ต่อไปนี้ สมมุติว่าสารละลายที่ถูกไทเทรตมีความเข้มข้นเท่ากับไทแทรนต์ ซึ่ง เท่ากับ 0.100 N และ H^{*} ที่อยู่ในสารละลายถูกบัฟเฟอร์ให้มีค่า = 1 จงคำนวณหา ค่าศักย์ไฟฟ้าของสารละลายเมื่อไทเทรตไป 10, 20, 50, 90, 95, 99, 100, 101, 105 และ 110% และสร้างกราฟระหว่างค่า E และเปอร์เซ็นต์ของการไทเทรต
 - a) V²⁺ ไทเทรดกับ Sn⁴⁺ ให้ V³⁺ กับ Sn²⁺
 - b) Fe³⁺ ไทเทรตกับ Ti³⁺ ให้ Fe²⁺ กับ TiO²⁺
 - c) Sn²⁺ ไทเทรตกับ MnO4 (ในสารละลายกรด) ให้ Sn⁴⁺ กับ Mn²⁺
 - d) Sn²⁺ ไทเทรตกับ Fe³⁺ ให้ Sn⁴⁺ กับ Fe²⁺
 - e) H₂SO₃ ไทเทรตกับ BrO₃ (ในสารละลายกรด) ให้ SO₄ กับ Br⁻
 - f) $HA_{s}O_{2}$ ไทเทรตกับ Ce^{4+} (ในสารละลายกรด $H_{2}SO_{4}$) ให้ $H_{3}A_{s}O_{4}$ กับ Ce^{3+}
 - g) H2S ไทเทรตกับ Ce4+ (ในสารละลายกรด HCl) ให้ S และ Ce3+
 - h) Ti³⁺ ไทเทรตกับ Fe(CN)₆³⁻ (ในสารละลายกรด) ให้ TiO₂ และ Fe(CN)₆⁴⁻

ค่ำตอบ

สมมุติให้ปริมาตรของสารที่ถูกไทเทรต = 100 ลบ.ซม.

	กับ Sn ²⁺	เทรตกับ Sn⁴+ ให้ V³+	<u>ไทเทรตกับ</u>	V ²⁺	a)
 -0.255 V	E° =	$V^{3+} + e \rightleftharpoons V^{2+}$	V ³⁺ +e		
 +0.154 V	E° =	$n^{4+}+2e \rightleftharpoons Sn^{2+}$	Sn ⁴⁺ +2e		

CH 233 (H)

ปริมาณไทแทร	1
0.100 N Sn4+	F
(cm ³)	
10	$[V^{2^{*}}] = \frac{100 \times 0.1 - 10 \times 0.1}{110} = \frac{9}{110} N$
	$[V^{3+}] = \frac{10 \times 0.1}{110} = \frac{1}{110} N$
	$E = -0.255 - \frac{0.059}{1} \log \frac{[9/110]}{[1/110]}$
	= -0.311 V
20	$[V^{2+}] = \frac{100 \times 0.1 - 20 \times 0.1}{120} = \frac{8}{120} N$
1	$[V^{3+}] = \frac{20 \times 0.1}{120} = \frac{2}{120} N$
	$E = -0.255 - 0.059 \log \frac{8}{2}$
	= -0.280 V
50	งุคกึ่งกลางของการไทเทรตจดสมมล
	$[V^{2+}] = [V^{3+}]$
	E = -0.255
90	$[V^{2+}] = \frac{100 \times 0.1 - 90 \times 0.1}{190} = \frac{1}{190} N$
	$[V^{3+}] = \frac{90 \times 0.1}{190} = \frac{9}{190} N$
	$E = -0.255 - 0.059 \log \frac{1}{9}$
	= -0.198 V

95	$[V^{2+}] = \frac{100 \times 0.1 - 95 \times 0.1}{195} = \frac{0.5}{195} N$	
	$[V^{3+}] = \frac{95 \times 0.1}{195}$ = $\frac{9.5}{195}$ N	
	$E = -0.255 - 0.059 \log \frac{0.5}{9.5}$	
-	= -0.179 V	
99	$[V^{2+}] = \frac{100 \times 0.1 - 99 \times 0.1}{199} = \frac{0.1}{199} N$	
	$[V^{3+}] = \frac{99 \times 0.1}{199}$ = $\frac{9.9}{199}$ N	
	$E = -0.255 - 0.059 \log \frac{0.1}{9.9}$	
	= -0.055 V	
100	$E_1 = E_V^\circ - 0.059 \log \frac{(V^{2+})}{(V^{3+})}$	(1)
	$E_2 = E_{Sn}^{\circ} - \frac{0.059}{2} \log \frac{[Sn^{2+}]}{[Sn^{4+}]}$	(2)
	$(1) + (2) \times 2 [E_1 = E_2]$	
	$3E = 2E_{Sn}^{0} + E_{V}^{0} - 0.059 \log \frac{[V^{2+}][Sn^{2+}]}{[V^{3+}][Sn^{4+}]}$	
	$E = \frac{2 E_{3\pi}^0 + E_V^0}{3} = \frac{0.308 - 0.255}{3}$	
	= 0.0177 V	
101	$[Sn^{4+}] = \frac{10 \times 0.1}{201} = \frac{1}{201} N$	
	$[Sn^{2+}] = \frac{100 \times 0.1}{201} = \frac{10}{201} N$	
	$E = 0.154 - \frac{0.059}{2} \log \frac{10}{0.1}$	
	= 0.095 V	

•

CH 233 (H)

.

105	$[Sn^{++}] = \frac{5 \times 0.1}{205} = \frac{0.5}{205} N$
	$[Sn^{2+}] = \frac{100 \times 0.1}{205} = \frac{10}{205} N$
	$E = 0.154 - \frac{0.059}{2} \log \frac{10}{0.5}$
	= 0.122 V
110	$[Sn^{4+}] = \frac{10 \times 0.1}{210} = \frac{1}{210}N$
	$[Sn^{2+}] = \frac{100 \times 0.1}{210} = \frac{10}{210} N$
· · · · · ·	$E = 0.154 - \frac{0.059}{2} \log \frac{10}{1}$
	= 0.124 V

. 1

CH 233 (H)

b) Fe ³⁺ ไทเทรดกับ Ti ³⁺ ให้ Fe ²⁺ กับ Ti	D ²⁺
$Fe^{3+} + e \neq Fe^{2+}$ $E^0 = 0.771 V$	(1)
$TiO^{2+} + 2H^{+} + e \Rightarrow Ti^{3+} + H_2O$	$E^0 = 0.1 V$

.....(2)

(1) - (2) $Fe^{3+} + Ti^{3+} + H_2O \rightarrow Fe^{2+} + TiO^{2+} + 2H^+$

ปริมาณไทแทรนด์ 0.100 N Ti ³⁺ (cm ³)	Ê
10	$[Fe^{3+}] = \frac{100 \times 0.1 - 10 \times 0.1}{110} = \frac{9}{110} N$
	$[Fe^{2+}] = \frac{10 \times 0.1}{110} = \frac{1}{110}N$
	$E = 0.771 - 0.059 \log \frac{1}{9}$
	E = 0.827 V
20	$[Fe^{3+}] = \frac{100 \times 0.1 - 20 \times 0.1}{120} = \frac{8}{120}$
	$[Fe^{2+}] = \frac{20 \times 0.1}{110} = \frac{2}{120} N$
	$E = 0.771 - 0.059 \log \frac{2}{8}$
	E = 0.806 V
50	ที่ขุดกึ่งกลางของการไทเทรต
A.	$[Fe^{2+}] = [Fe^{3+}]$
	$\mathbf{E} = 0.771 \mathbf{V}$
90	$[Fe^{3+}] = \frac{100 \times 0.1 - 90 \times 0.1}{190} = \frac{1}{190} N$
	$[Fe^{2^+}] = \frac{90 \times 0.1}{190} = \frac{9}{190} N$
	$E = 0.771 - 0.059 \log \frac{9}{1}$
	E = 0.715 V

CH 233 (H)

95	$[Fe^{3+}] = \frac{100 \times 0.1 - 95 \times 0.1}{195} = \frac{0.5}{195} N$	
	$[Fe^{2*}] = \frac{95 \times 0.1}{195} = \frac{9.5}{195} N$	
	$E = 0.771 - 0.059 \log \frac{9.5}{0.5}$	
	E = 0.695 V	
99	$[Fe^{3+}] = \frac{100 \times 0.1 - 99 \times 0.1}{199} = \frac{0.1}{199} N$	
	$[Fe^{2+}] = \frac{99 \times 0.1}{199} = \frac{9.9}{199} N$	
	$E = 0.771 - 0.059 \log \frac{9.9}{0.1}$	
·	= 0.653 V	
100	$E_1 = E_{F_e}^0 - 0.059 \log \frac{[Fe^{2+}]}{[Fe^{3+}]}$	(1)
	$E_2 = E_{Ti}^0 - 0.059 \log \frac{[Ti^{3+}]}{[TiO^{2+}][H^+]^2}$	(2)
	$[H^+] = 1$ $[Fe^{2+}] = [TiO^{2+}]$	
	$[Fe^{3+}] = [Ti^{3+}]$	
	(1) = (2)	
	$2E = E_{Fe}^{0} + E_{Ti}^{0} - 0.059 \log \frac{[\text{Ti}^{3^{+}}][\text{Fe}^{2^{+}}]}{[\text{Ti}O^{2^{+}}][\text{Fe}^{3^{+}}][\text{H}^{+}]^{2}} = 1$	
	$E = \frac{E_{F_q}^0 + E_{T_i}^0}{2} = \frac{0.771 + 0.1}{2}$	
	= 0.436 V	
101	$[Ti^{3+}] = \frac{1 \times 0.1}{201} = \frac{0.1}{201}$	
	$[\text{TiO}^{2^*}] = \frac{100 \times 0.1}{201} = \frac{10}{201}$	
	$E = E^{0} - 0.059 \log \frac{[\text{Ti}^{3+}]}{[\text{Ti}O^{2+}][\text{H}^{+}]^{2}}$	
	$[H^*] = 1$	

442

Сн 233 (н) ЫНИ 28

	$E = 0.1 - 0.059 \log \frac{0.1}{10}$
	= 0.218
105	$[Ti^{3+}] = \frac{5 \times 0.1}{205} = \frac{0.5}{205}$
	$[\text{TiO}^{2+}] = \frac{100 \times 0.1}{205} = \frac{10}{205}$
	$E = 0.1 - 0.059 \log \frac{0.5}{10}$
	E = 0.177 V
110	$[Ti^{3+}] = \frac{10 \times 0.1}{210} = \frac{1}{210}$
	$[\text{TiO}^{2+}] = \frac{100 \times 0.1}{210} = \frac{10}{210}$
	$E = 0.1 - 0.059 \log \frac{1}{10}$
	E = 0.159 V

CH 233 (H)

٤_

c) Sn²⁺ ไทเทรตกับ MnO4 (ในสารละลายกรด) ให้ Sn⁴⁺ กับ Mn²⁺

 $MnO_{4}^{-} + 8 H^{+} + 5 e \rightleftharpoons Mn^{2+} + 4 H_{2}O \qquad E^{0} = 1.51 V$ Sn⁴⁺ + 2 e \Rightarrow Sn²⁺ $E^{0} = 0.154 V$

	Ц 9
(cm ³)	E
10	$[Sn^{2+}] = \frac{100 \times 0.1 - 10 \times 0.1}{110} = \frac{9}{110} N$
	$[Sn^{4+}] = \frac{10 \times 0.1}{110} = \frac{1}{110} N$
	$E = 0.154 - \frac{0.059}{2} \log \frac{9}{1}$
	= 0.126 V
20	$[Sn^{2+}] = \frac{100 \times 0.1 - 20 \times 0.1}{120} = \frac{8}{120} N$
	$[Sn^{4+}] = \frac{20 \times 0.1}{120} = \frac{2}{120}$
	$E = 0.154 - \frac{0.059}{2} \log \frac{8}{2}$
	= 0.136 V
50	ที่จุดกึ่งกลางของการไทเทรต
	$[Sn^{2+}] = [Sn^{4+}]$
	$\mathbf{E} = 0.154 \mathbf{V}$
90	$[Sn^{2+}] = \frac{100 \times 0.1 - 90 \times 0.1}{190} = \frac{1}{190} N$
	$[Sn^{4+}] = \frac{9.0 \times 0.1}{190} = \frac{9}{190} N$
	$E = 0.154 - \frac{0.059}{2} \log \frac{1}{9}$
	= 0.182 V

 $2 MnO_4^- + 16 H^+ + 5 Sn^{2+} \Rightarrow 2 Mn^{2+} + 8 H_2O + 5 Sn^{4+}$

CH 233 (H)

95	$[Sn^{2+}] = \frac{100 \times 0.1 - 95 \times 0.1}{195} = \frac{0.5}{195}$
	$[Sn^{4+}] = \frac{95 \times 0.1}{195} = \frac{9.5}{195}$
	$E = 0.154 - \frac{0.059}{2} \log \frac{0.5}{9.5}$
	= 0.192 V
99	$[Sn^{2*}] = \frac{100 \times 0.1 - 99 \times 0.1}{199} = \frac{0.1}{199}$
	$[Sn^{4+}] = \frac{99 \times 0.1}{199} = \frac{9.9}{199}$
	$E = 0.154 - \frac{0.059}{2} \log \frac{0.1}{9.9}$
	= 0.213 V
100	จากวิธีการเดียวกับการคำนวณข้อ 15 (e)
	$E = 5 E_{MnO_{4}}^{0} - 2 E_{Sn^{4+}}^{0} - \frac{0.059}{7} \log \frac{1}{[H^{+}]^{8}}$
	$= \frac{5 \times 1.51 - 2 \times 0.154}{7} - 0$
	= 1.034 V
101	$[MnO_{4}^{-}] = \frac{1 \times 0.1}{201} = \frac{0.1}{201}$
	$[Mn^{2+}] = \frac{100 \times 0.1}{201} = \frac{10}{201}$
	$E = 1.51 - \frac{0.059}{5} \log \frac{10}{0.1}$
	= 1.486 V
· · · · · · · · · · · · · · · · · · ·	
105	$[MnO_4^-] = \frac{5 \times 0.1}{205} = \frac{0.5}{205}$
	$[Mn^{2+}] = \frac{100 \times 0.1}{205} = \frac{10}{205}$
	$E = 1.51 - \frac{0.059}{5} \log \frac{10}{0.5} = 1.495 V$

110
$$[MnO_{4}^{-}] = \frac{10 \times 0.1}{210} = \frac{1}{210}$$
$$[Mn^{2+}] = \frac{100 \times 0.1}{210} = \frac{10}{210}$$
$$E = 1.51 - \frac{0.059}{5} \log \frac{10}{1}$$
$$= 1.498 V$$

d) Sn ²⁺ ไทเทรตกับ Fe ³	³⁺ ให้ Sn ⁴⁺ กับ Fe ²⁺
$Fe^{3+} + e \rightleftharpoons Fe^{2+}$	$E^{0} = 0.771$
$\operatorname{Sn}^{4+} + 2e \rightleftharpoons \operatorname{Sn}^{2+}$	$E^{o} = 0.154$
	2 Fe ³ [*] + Sn ²⁺ ≈ 2 Fe ²⁺ + Sn ⁴⁺

CH 233 (H)

ปริมาณไทแทรน	ศ์
$0.100 \text{ N} \text{ Fe}^{3+}$	E
(cm ³)	
	ทุก ๆ จุดก่อนถึงจุดสมมูล คำนวณแบบเดียวกับข้อ c)
10	$\mathbf{E} = 0.126$
20	E = 0.136
50	E = 0.154
90	E = 0.182
95	E = 0.192
99	E = 0.213
100	$E = \frac{E_{Fe}^0 + 2 E_{Sn}^0}{3}$
	$= \frac{0.771 + (2 \times 0.154)}{3}$
	= 0.360 V
101	$[Fe^{3+}] = \frac{1 \times 0.1}{201} = \frac{0.1}{201}$
	$[Fe^{2+}] = \frac{100 \times 0.1}{201} = \frac{10}{201}$
	$E = 0.771 - 0.059 \log \frac{10}{0.1}$
	= 0.653 V
105	$[Fe^{3+}] = \frac{5 \times 0.1}{205} = \frac{0.5}{205}$
	$[Fe^{2+}] = \frac{100 \times 0.1}{205} = \frac{10}{205}$
	$E = 0.771 - 0.059 \log \frac{10}{0.5}$
	= 0.694 V
110	$[Fe^{3+}] = \frac{10 \times 0.1}{210} = \frac{1}{210}$
	$[Fe^{2+}] = \frac{100 \times 0.1}{210} = \frac{10}{210}$

$$E = 0.771 - 0.059 \log \frac{10}{1}$$

= 0.712 V

ปริมาณไทแทรน	ค์
0.100 N BrO3	E
(cm ³)	
10	$[H_2SO_3] = \frac{100 \times 0.1 - 10 \times 0.1}{110} = \frac{9}{110}$
	$[SO_4^*] = \frac{10 \times 0.1}{110} = \frac{1}{110}$
	$E = 0.17 - \frac{0.059}{2} \log \frac{[H_2SO_3]}{[SO_4^*] [H^+]^4}$
	$[H^+] = 1.00$
	$E = 0.17 - \frac{0.059}{2} \log \frac{9}{1}$
	= 0.142 V
20	$[H_2SO_3] = \frac{8}{120}$, $[Sn^{4+}] = \frac{2}{120}$
	$E = 0.17 - \frac{0.059}{2} \log \frac{8}{2}$
	= 0.152 V
50	$[H_2SO_3] = [SO_4^*]$
	E = 0.170 V
90	$[H_2SO_4] = \frac{1}{190}$, $[SO_4^n] = \frac{9}{190}$
	$E = 0.17 - \frac{0.059}{2} \log \frac{1}{9}$
	= 0.198 V
95	$[H_2SO_3] = \frac{0.5}{195}$, $[SO_4^*] = \frac{9.5}{195}$
	$E = 0.17 - \frac{0.059}{2} \log \frac{0.5}{9.5}$
	= 0.208 V

.

99	$[H_2SO_3] = \frac{0.1}{199}$; $[SO_4^n] = \frac{99}{199}$
	$E = 0.17 - \frac{0.059}{2} \log \frac{0.1}{99}$
	= 0.229
100	$E_1 = E_{BrO_3}^{\circ} - \frac{0.059}{6} \log \frac{[Br^-]}{[BrO_3^-][H^+]^6} \qquad \dots $
	$E_2 = E_{SO_4}^\circ - \frac{0.059}{2} \log \frac{[H_2SO_3]}{[SO_4][H^*]^4} \qquad \dots $
	$(1) \times 6 + (2) \times 2 \ (E_1 = E_2) \qquad [H^+] = 1.00$
	$8E = 6E_{Bro_{3}}^{\circ} + 2E_{So_{4}}^{\circ} - 0.059 \log \frac{[Br]{[H_{2}8O_{3}]}}{[BrO_{3}][SO_{4}^{*}]}$
	$E = \frac{6E_{Bro_3}^{\circ} + 2E_{SO_4}^{\circ}}{8}$
	$= \frac{(6 \times 1.45) + (2 \times 0.17)}{8}$
	= 1.130 V
101	$[BrO_3^-] = \frac{0.1}{201}$; $[Br^-] = \frac{10}{201}$
	$E = 1.45 - \frac{0.059}{6} \log \frac{[Br^-]}{[BrO_3^-][H^+]^6}$
	$[H^*] = 1.00$
	$E = 1.45 - \frac{0.059}{6} \log \frac{10}{0.1}$
	= 1.430 V
105	$[BrO_3^-] = \frac{0.5}{205} N ; \qquad [Br^-] = \frac{10}{205} N$
	$E = 1.45 - \frac{0.059}{6} \log \frac{10}{0.5}$
	= 1.437

110
$$[BrO_3^-] = \frac{1}{210} N; [Br^-] = \frac{10}{210} N$$

 $E = 1.45 - \frac{0.059}{2} \log \frac{10}{1}$
 $= 1.440 V$

CH 233 (H)

ปริมาณไทแทรนศ 0.100 N Ce ⁴⁺	E .
(cm)	
10	$[H_3AsO_3] = \frac{9}{110} N$, $[H_3AsO_4] = \frac{1}{110} N$
	$E = E^{\circ} - \frac{0.059}{2} \log \frac{[H_3AsO_3]}{[H_3AsO_4][H^+]^2}$
	$[H^*] = 1$
	$E = 0.059 - \frac{0.059}{2} \log \frac{9}{1}$
	= 0.531 V
20	$[H_3AsO_3] = \frac{8}{120} N$, $[H_3AsO_4] = \frac{2}{120} N$
	$E = 0.559 - \frac{0.059}{2} \log \frac{8}{2}$
	= 0.541 V
50	$[H_3AsO_3] = [H_3AsO_4]$
	E = 0.559 V
90	$[H_3AsO_3] = \frac{1}{190} N$, $[H_3AsO_4] = \frac{9}{190} N$
	$E = 0.559 - \frac{0.059}{2} \log \frac{1}{9}$
	= 0.587 V
95	$[H_3AsO_3] = \frac{0.5}{195}$ N; $[H_3AsO_4] = \frac{9.5}{195}$ N
	$E = 0.559 - \frac{0.059}{2} \log \frac{0.5}{9.5}$
	= 0.597 V

452

.

.

	99	$[H_3AsO_3] = \frac{0.1}{199} N ; [H_3AsO_4] = \frac{9.9}{199} N$
:		$E = 0.559 - \frac{0.059}{2} \log \frac{0.1}{9.9}$
		= 0.618 V
	100	$E = \frac{E_{C_0}^{\circ} + 2E_{H_3A_sO_4}^{\circ}}{3}$
		$= \frac{1.44 + 2 (0.559)}{3}$
		= 0.853 V
	101	$[Ce^{4+}] = \frac{0.1}{201} N ; [Ce^{3+}] = \frac{10}{201}$
		$E = 1.44 - 0.059 \log \frac{10}{0.1}$
		= 1.322 V
	105	$[Ce^{4+}] = \frac{0.5}{201} N ; [Ce^{3+}] = \frac{10}{205} N$
,		$E = 1.44 - 0.059 \log \frac{10}{0.5}$
		= 1.363 V
	110	$[Ce^{4+}] = \frac{1}{210} N$, $[Ce^{3+}] = \frac{10}{210} N$
		$E = 1.44 - 0.059 \log \frac{10}{1}$
		= 1.381 V

453

٠

,

 $S(s) + 2H^{+} + 2e \Rightarrow H_2S$ $E^0 = 0.141 V$

 $2 \operatorname{Ce}^{4+} + \operatorname{H}_2 S \rightleftharpoons \operatorname{Ce}^{3+} + \operatorname{S}(s) + 2 \operatorname{H}^+$

ปริมาณไทแทรนต์	
0.100 N Ce ⁴⁺	E
(cm ³)	
10	$[H_2S] = \frac{9}{110}N$
	$E = E^{0} - \frac{0.059}{2} \log \frac{[H_{2}S]}{[H^{+}]^{2}}$
	$[H^*] = 1$
	$E = 0.141 - \frac{0.059}{2} \log \frac{9}{110}$
	= 0.173 V

CH 233 (H)

20	$[H_2S] = \frac{8}{120}$
	$E = 0.141 - \frac{0.059}{2} \log \frac{8}{120}$
	= 0.176 V
50	$[H_2S] = \frac{50 \times 0.1}{150} = \frac{1}{30}N$
	$E = 0.141 - \frac{0.059}{2} \log \frac{1}{30}$
	= 0.185 V
90	$[H_2S] = \frac{1}{190}N$
	$E = 0.141 - \frac{0.059}{2} \log \frac{1}{190}$
	= 0.208 V
99	$[H_2S] = \frac{0.1}{199} N$
	$E = 0.141 - \frac{0.059}{2} \log \frac{0.1}{199}$
	= 0.238 V
100	$E = \frac{E_{Ce^{4+}}^{0} + 2 E_{H_2S}^{0}}{3}$
	$= \frac{1.28 + 2(0.141)}{3}$
	= 0.521 V
101	$[Ce^{4+}] = \frac{0.1}{201} N, [Ce^{3+}] = \frac{10}{201} N$
	$E = 1.28 - 0.059 \log \frac{10}{1}$
·	= 1.162
105	$[Ce^{4+}] = \frac{0.5}{201} N, [Ce^{3+}] = \frac{10}{205} N$
	$E = 1.28 - 0.059 \log \frac{10}{0.5}$
	= 1.203 V

$$110 \qquad [Ce^{44}] = \frac{1}{210} N , [Ce^{34}] = \frac{10}{210} \\ E = 1.28 - 0.059 \log \frac{10}{1} \\ = 1.221 V$$

$$1000 S M g)$$

$$E = \frac{1.3}{1.2} \\ 1.1 \\ 1.0 \\ 0.9 \\ 0.8 \\ 0.7 \\ 0.6 \\ 0.5 \end{bmatrix}$$

h) Ti³⁺ ไทเทรคกับ Fe(CN)³⁻ (ในสารละลายกรค) ให้ TiO₂ และ Fe(CN)⁴⁻

 $Fe (CN)_{6}^{3-} + e \rightleftharpoons Fe (CN)_{6}^{4-} \qquad E^{0} = 0.71 V$ $TiO^{2^{+}} + 2 H^{+} + e \rightleftharpoons Ti^{3^{+}} + H_{2}O \qquad E^{0} = 0.1 V$ $Fe (CN)_{6}^{3-} + Ti^{3^{+}} + H_{2}O \rightleftharpoons Fe (CN)_{6}^{4-} + TiO^{2^{+}} + 2 H^{+}$

CH 233 (H)

0.4 0.3 0.2 0.1

0

20

40

60

80

100

120

% ไทแทรนต์

ปริมาณไทแทรนต์ 0.100 N Fe(CN) ₆ ³⁻ (cm ³)	E
10	$[Ti^{3+}] = \frac{9}{110}N, [TiO^{2+}] = \frac{1}{110}N$ $E = E^{0} - 0.059 \log \frac{[Ti^{3+}]}{[TiO^{2+}][H^{+}]^{2}}$ $[H^{+}] = 1$ $E = 0.1 + 0.059 \log^{9}$
	= 0.044 V
20	$[Ti^{3+}] = \frac{8}{120} N, [TiO^{2+}] = \frac{2}{120} N$ $E = 0.1 - 0.059 \log \frac{8}{2}$ $= 0.065 V$
50	$[Ti^{3+}] = [TiO^{3+}]$ E = 0.100 V
90	$[Ti^{3*}] = \frac{1}{190}N, [TiO^{2*}] = \frac{9}{190}N$ $E = 0.1 - 0.059 \log \frac{1}{9}$ = 0.156 V
95	$[Ti^{3+}] = \frac{0.5}{195} N, [TiO^{2+}] = \frac{9.5}{195}$
	$E = 0.1 - 0.059 \log \frac{0.5}{9.5}$ = 0.176 V
99	$[Ti^{3+}] = \frac{0.1}{199} N$, $[TiO_2^{+}] = \frac{9.9}{199} N$ $E = 0.1 - 0.059 \log \frac{0.1}{9.9}$
	= 0.218 V

-

100	$E = E_{Fe}^{0} + E_{Ti}^{0} = \frac{0.71 + 0.1}{2}$
	= 0.405
101	$[Fe(CN)_{6}^{3-}] = \frac{0.1}{201}N, [Fe(CN)_{6}^{4-}] = \frac{10}{201}N$
	$E = 0.71 - 0.059 \log \frac{10}{0.1}$
	= 0.592 V
105	$[Fe(CN)_{6}^{3-}] = \frac{0.5}{205}N, [Fe(CN)_{6}^{4-}] = \frac{10}{205}N$
	$E = 0.71 - 0.059 \log \frac{10}{0.5}$
	= 0.633 V
110	$[Fe(CN)_{6}^{3-}] = \frac{1}{210}N, [Fe(CN)_{6}^{4-}] = \frac{10}{210}N$
	$E = 0.71 - 0.059 \log \frac{10}{1}$
	= 0.651 V

10) จงคำนวณหาความผิดพลาดของการไทเทรด (titration error) ในการไทเทรต Fe^{3+} ด้วย Sn^{2+} เมื่อใช้ m-bromophenol indophenol ($E_{In}^{o} = 0.25$ V) เป็นอินดิเคเตอร์

คำตอบ

$$2Fe^{3+} + Sn^{2+} \neq 2Fe^{2+} + Sn^{4+}$$

$$E_{nentrup} = \frac{E_{Fe}^{o} + 2E_{Sn}^{o}}{3}$$

$$= \frac{0.771 + 2(0.154)}{3}$$

$$= 0.360 \text{ V} = E_{system} = E_{Sn} = E_{Fe} = E_{In}$$

แต่ในการไทเทรตเมื่อถึงจุดยุติจะมีก่า $E_{In} = 0.25$ V \therefore ที่จุดยุติจะมีก่า $E_{In} = E_{Fe} = 0.25$ V

ท้ Y คือ เศษส่วนโมลของ Fe³⁺ ที่เหลือจากการไทเทรต

... 1 – Y ลือ เศษส่วนโมลของ Fe²⁺ ที่เกิดขึ้นจากการไทเทรด

$$\frac{[Fe^{2*}]}{[Fe^{3*}]} = \frac{1-Y}{Y}$$

$$E = E_{Fe}^{0} - \frac{0.059}{1} \log \frac{[Fe^{2*}]}{[Fe^{3*}]}$$

$$0.25 = 0.771 - 0.059 \log \frac{1-Y}{Y}$$

$$log^{1} - \frac{Y}{Y} = \frac{0.771 - 0.25}{0.059}$$

$$= 8.83$$

$$\frac{1-Y}{Y} = 6.76 \times 10^{8}$$

$$I - Y = 6.76 \times 10^{8} Y$$

$$Y = \frac{1}{6.76 \times} = 1.48 \times 10^{-9}$$

ในเมื่อ X คือ เศษส่วนของการถูกไทเทรตของ Fe³⁺

CH 233 (H)

t

ปริมาณสารศัวอย่าง คือ ปริมาณของ[Fe²⁺] ที่เกิดขึ้น รวมกับปริมาณของ[Fe³⁺] ที่เหลือ

$$\therefore x = \frac{[Fe^{2*}]}{[Fe^{3*}] + [Fe^{2*}]}$$

$$\frac{1}{x} = \frac{[Fe^{3*}] + [Fe^{2*}]}{[Fe^{2*}]}$$

$$= \frac{[Fe^{3*}]}{[Fe^{2*}]} + 1$$

$$\therefore \frac{1}{x} = (\frac{Y}{1-Y}) + 1$$

$$= \frac{1}{1-Y}$$

$$x = 1 - Y$$

$$= 1 - 1.48x \ 10^{-9}$$
% titration error = (x - 1) x 100

$$\therefore \% \text{ titration error} = [(1 - 1.48 \times 10^{-9}) - 1)] \times 100$$

$$= -1.48x \ 10^{-7}$$

- จงดำนวณหาความผิดพลาดของการไทเทรดเมื่อใช้ diphenylamine sulfonic acid เป็น อินดิเกเตอร์ของการไทเทรดต่อไปนี้ ,
 - a) 25.0 **al.th. 101** 0.02 M Fe³⁺ **At** 0.01 M Sn²⁺
 - b) 50.0 ลบ.ซม. ของ 0.10 M H₃AsO₃ ด้วย 0.10 M Ce⁴⁺
 - c) 30.0 ลบ.ชม. ของ 0.05 M Cr₂O₇²⁻ ด้วย 0.10 M Sn²⁺
 - d) 25.0 ลบ.ชม. ของ 0.10 M Fe²⁺ ด้วย 0.10 M Ce⁴⁺
 - e) 50. 0 ลบ.ชม. ของ 0.01 M Fe(CN) ด้วย 0.01 M Ce4+

สมมติว่าในสารละลายตลอดการไทเทรดมีความเข้มข้นของ HCl = 1.0 M

ค่ำตอบ

(เฉพาะข้อ a) และ b))

a) จากตารางที่ 14.2 ในหนังสือเกมีวิเกราะห์ I หน้า 576 อินดิเกเตอร์ diphenylamine sulfonic acid มีก่า

 $\mathbf{E}^{\circ} = 0.85 \text{ v} \quad \mathbf{g}^{\downarrow} = \mathbf{E}_{sys} = \mathbf{E}_{Fe} = \mathbf{E}_{Sn}$

CH 233 (H)

ให้พิจารณา E ของไทแทรนต์

$$E_{sn} = E_{sn}^{0} - \frac{0.059}{2} \log \frac{[Sn^{2*}]}{[Sn^{4*}]}$$

$$0.85 = 0.154 - \frac{0.059}{2} \log \frac{[Sn^{2*}]}{[Sn^{4*}]}$$

$$\frac{0.059}{2} \log \frac{[Sn^{2*}]}{[Sn^{4*}]} = 0.154 - 0.85$$

$$\log \frac{[Sn^{2*}]}{[Sn^{4*}]} = \left(\frac{0.154 - 0.85}{0.059}\right) \times 2$$

$$= -23.59$$

$$\frac{[Sn^{2*}]}{[Sn^{4*}]} = 2.57 \times 10^{-24}$$

ที่จุดขุติ เศษส่วน $rac{[Sn^{2+}]}{[Sn^{4+}]}$ พิจารณาได้ว่า คือเศษส่วนโมลของไทแทรนต์ส่วน เกินที่ไม่ถูกไทเทรต (ส่วนที่เกินจุดสมมูล) = (x-1) ซึ่ง x มีค่ามากกว่า 1

... % titration error =
$$\frac{[Sn^{2+}]}{[Sn^{4+}]} \times 100$$

= $2.57 \times 10^{-24} \times 100$
= 2.57×10^{-22}

b)

 Ce⁴⁺ + e ≠ Ce"
 E° = 1.70
 v

 H₃AsO₄ + 2H⁺ + 2e ≠ H₃AsO₃ + H₂O
 E° = 0.577
 v

 อินดิเกเตอร์ที่ใช้มีก่า
 E° = 0.85
 V

 ให้พิจารณาก่า E ของ
 H₃AsO₃ ที่ถูกไทเทรต

$$E = E^{\circ} - \frac{0.059}{2} \log \frac{[H_3AsO_3]}{[H_3AsO_4]}$$

$$0.85 = 0.577 \cdot y \log \frac{[H_3AsO_3]}{[H_3AsO_4]}$$

$$\frac{0.059}{2} \log \frac{[H_3AsO_3]}{[H_3AsO_4]} = 0.577 - 0.85$$

$$\log \frac{[H_3AsO_3]}{[H_3AsO_4]} = \frac{(0.577 - 0.85)^2}{0.059}$$

СН 233 (Н)

$$= -9.25$$

$$\frac{[H_3AsO_3]}{[H_3AsO_4]} = 5.62 \times 10^{-10}$$

ที่จุดขุติ เศษส่วน $\frac{[H_3AsO_3]}{[H_3AsO_4]}$ พิจารณาได้ว่า คือ เศษส่วนโมลของสารตัวอย่างที่ยังไม่ ถูกไทเทรต (ยังไม่ถึงจุดสมมูล) = (x − 1) ซึ่ง x มีก่าน้อยกว่า 1 $\therefore \frac{[H_3AsO_3]}{[H_3AsO_4]} = (x - 1) = -5.62 \times 10^{-10}$ % titration error = $-5.62 \times 10^{-10} \times 100$ = -5.62×10^{-8}

CH 233 (H)

แบบฝึกหัดเพิ่มเติมบทที่ 14

- 1) Vanadous ion, V^{2+} , can be oxidized in three discrete steps to VO_2^+ in 1.00 *M* H⁺ by Ce⁴⁺. If 20.00 mL of 0.01142 M VSO₄ is being titrated with 0.03891 M Ce⁴⁺, calculate the electrode potential of the half-cell solution at the following points.
 - (a) after addition of 5.00 mL
- (e) after addition of 15.00 mL
- (**b**) at first equivalence point
- (f) at third equivalence point (g) after addition of 20.00 mL
- (c) after addition of 7.50 mL (d) at second equivalence point
- Select an indicator that could be used at each equivalence point.
- 2) A 50.00-mL aliquot of a mixture of 0.03140 M FeCl₂ and 0.1108 M TiCl₃ buffered at pH 2.00 was titrated with 0.03442 M K₂Cr₂O₇. Calculate the electrode potential of the solution after the addition of the following volumes of titrants. (a) 10.00 mL (c) 30.00 mL (d) 40.00 mL **(b)** 20.00 mL
- 3) Is there any chance that $K_2Cr_2O_7$ could be used to titrate $CrCl_2$? If so, specify the general conditions and write a balanced reaction for the titration.
- 4) A sample of pure ascorbic acid (vitamin **C**) weighing 283.4 mg was dissolved in 29.00 mL of 1.00 M HCl and treated with 25.00 mL of 0.06441 M Fe(NO₃)₃.

The electrode potential of the half-cell solution was 0.390 V.

- (a) Calculate the standard electrode potential for the ascorbic acid half-cell.
- (b) What would the electrode potential have been if the HCl solution was 0.100 M?
- 5) The electrode potential of a TiO²⁺ | Ti³⁺ half-cell depends on pH.
 (a) Does this mean that TiO²⁺ or Ti³⁺ could be determined by titration with an acid? Explain your answer.
 - (b) Calculate the electrode potential of an equimolar mixture of TiO^{2+} and Ti^{3+} at pH values ranging from 1 to 7 in 1-unit increments.
 - (c) Plot the electrode potential versus **pH** and determine the slope. of the line.

CH 233 (I-I)

- 6) The difference in electrode potential at 95% and 105% titrated can be taken as a rough measure of the size of the equivalence-point break in a titration curve. Calculate this difference for the titration of 25.00 mL of a solution containing Fe²⁺ at the following concentrations with Ce⁴⁺ at the same concentration as the Fe²⁺.
 (a) 1.00 × 10⁻¹ M (b) 1.00 x 10⁻³ M (c) 1.00 × 10-s M
- 7) Calculate the potential at 25°C of a cell consisting of an sce and an Ag/AgCl indicator electrode dipping into a titration vessel, which initially contained 50.0 mL of 0.0150 M NaCl, after the addition of 5.00 mL of 0.100 M AgNO₃. The sce is attached to the negative terminal of the DVM.
- 8) Calculate the potential (relative to the standard hydrogen electrode) at the equivalence point for the titration of Fe^{2+} with MnO_4^- at pH 4.00 and 25°C.
- 9) Calculate the potential at 25°C of a cell consisting of an sce and a platinum wire indicator electrode dipping into a titration vessel, which initially contained 20.00 mL of 0.0100 $M \text{ MnO}_4^-$ buffered at pH 4.00, after the addition of 5.00, 10.00, 15.00, 17.00, 19.00, 20.00, 21.00, 23.00, 25.00, 30.00, and 40.00 mL of 0.0500 $M \text{ Fe}^{2+}$. Plot the titration curve and indicate the equivalence point. The sce is attached to the negative terminal of the DVM.

10) The following data were obtained from a potentiometric titration of 50.0 mL of hydrochloric acid with 0.100 M sodium hydroxide by using a glass pH electrode. Calculate the original concentration of hydrochloric acid.

NaOH volume, mL	рН
4.00	1.12
9.00	1.30
14.00	I.50
19.00	1.88
21.00	2.14
23.00	2.50
24.60	6.97
25.00	11.01
27.00	11.55
29.00	11.80
35.00	12.16
40.00	12.33
50.00	12.61

- Calculate the potential at 25°C of a cell consisting of an sce (negative terminal) and a platinum wire indicator electrode dipping into a titration vessel, which initially contained a pH 2.00 solution of 20.00 mL of 0.0105 M Fe'+, after the addition of 4.00 mL of 0.0105 M potassium permanganate.
- 12) A 1.000-g sample of a brass was dissolved in nitric acid and boiled to near dryness. The resulting solution was dissolved in about 25 mL of water and neutralized by the addition of ammonium hydroxide. The neutralized solution was reacted with a large excess of potassium iodide as shown in the following equation:

$$2Cu^{2} + 4I^{-} = 2CuI + I_{2}$$

The iodine liberated from the reaction required 24.30 **mL** of 0.1000 M thiosulfate solution to reach the endpoint of the potentiometric titration. Calculate the percentage by weight of copper in the brass.

CH 233 (H)

